Definitions | True, False, Atom, inl x , tt, "$token", inr x , ff, x:A.B(x), P Q, x dom(f), e (e1,e2].P(e), e [e1,e2].P(e), e [e1,e2].P(e), e [e1,e2).P(e), e [e1,e2).P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e<e'.P(e), e c e', (e < e'), e loc e' , (e <loc e'), l_disjoint(T;l1;l2), (x l), Outcome, q-rel(r;x), r < s, ( x L.P(x)), x L. P(x), x f y, A c B, a < b, a <p b, a b, a ~ b, b | a, x:A. B(x), Dec(P), csinput?(x), X(e), if b then t else f fi , case b of inl(x) => s(x) | inr(y) => t(y), E(X), {x:A| B(x)} , e  X, t.1, E, chain_sys(Cmd), let x,y = A in B(x;y), AbsInterface(A), ES, Top, P & Q,  x. t(x), first(e), pred(e), A, <a, b>,  x,y. t(x;y), pred!(e;e'), , SWellFounded(R(x;y)), constant_function(f;A;B), b, , e < e', r s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , type List, Msg(M), kind(e), loc(e), Knd, kindcase(k; a.f(a); l,t.g(l;t) ), EOrderAxioms(E; pred?; info), x:A B(x), IdLnk, left + right, Unit, EqDecider(T), Type, P  Q, strong-subtype(A;B), , Id, f(a), a:A fp B(a), EState(T), x:A. B(x), x:A B(x), t T, s = t |